Erase fiducials
In [1]:
Copied!
from pathlib import Path
import tifffile
import numpy as np
import torch
import pooch
from matplotlib import pyplot as plt
from torch_cryoeraser import erase_region_2d
from pathlib import Path
import tifffile
import numpy as np
import torch
import pooch
from matplotlib import pyplot as plt
from torch_cryoeraser import erase_region_2d
In [2]:
Copied!
# https://github.com/fatiando/pooch
GOODBOY = pooch.create(
path=pooch.os_cache("torch-cryoeraser"),
base_url="doi:10.5281/zenodo.15269648/",
registry={
"EMPIAR-10164_TS_01_000_0.0_image.tif": "md5:5ae21ea749fd7298c6991dd9f8872b44",
"EMPIAR-10164_TS_01_000_0.0_mask.tif": "md5:aae7af9995e0cede9d3d7c5ab4a9b1bf",
},
)
IMAGE_FILE = Path(GOODBOY.fetch("EMPIAR-10164_TS_01_000_0.0_image.tif", progressbar=True))
MASK_FILE = Path(GOODBOY.fetch("EMPIAR-10164_TS_01_000_0.0_mask.tif", progressbar=True))
# https://github.com/fatiando/pooch
GOODBOY = pooch.create(
path=pooch.os_cache("torch-cryoeraser"),
base_url="doi:10.5281/zenodo.15269648/",
registry={
"EMPIAR-10164_TS_01_000_0.0_image.tif": "md5:5ae21ea749fd7298c6991dd9f8872b44",
"EMPIAR-10164_TS_01_000_0.0_mask.tif": "md5:aae7af9995e0cede9d3d7c5ab4a9b1bf",
},
)
IMAGE_FILE = Path(GOODBOY.fetch("EMPIAR-10164_TS_01_000_0.0_image.tif", progressbar=True))
MASK_FILE = Path(GOODBOY.fetch("EMPIAR-10164_TS_01_000_0.0_mask.tif", progressbar=True))
In [3]:
Copied!
# load images as torch tensors
image = tifffile.imread(IMAGE_FILE)
image = torch.tensor(image)
mask = tifffile.imread(MASK_FILE)
mask = torch.tensor(mask)
# erase masked regions
erased_image = erase_region_2d(image, mask)
# load images as torch tensors
image = tifffile.imread(IMAGE_FILE)
image = torch.tensor(image)
mask = tifffile.imread(MASK_FILE)
mask = torch.tensor(mask)
# erase masked regions
erased_image = erase_region_2d(image, mask)
In [4]:
Copied!
# visualize data and result
masked_mask = np.where(mask.numpy() == 1, mask, np.nan)
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(image, cmap="grey")
axs[0].imshow(masked_mask, cmap="Purples", alpha=0.3, vmin=0, vmax=1)
axs[1].imshow(erased_image, cmap="grey")
axs[0].set_axis_off()
axs[1].set_axis_off()
# visualize data and result
masked_mask = np.where(mask.numpy() == 1, mask, np.nan)
fig, axs = plt.subplots(ncols=2)
axs[0].imshow(image, cmap="grey")
axs[0].imshow(masked_mask, cmap="Purples", alpha=0.3, vmin=0, vmax=1)
axs[1].imshow(erased_image, cmap="grey")
axs[0].set_axis_off()
axs[1].set_axis_off()